S0049-3848(14)00284-9

Original Article

Oil Content and Fatty Acid Composition in Castor (Ricinus communis L.) Genotypes

Year: 2021 | Month: September | Volume 14 | Issue 3

References (21)

1.Chaudhari, B.A., Patel, M.P., Dharajiya, D.T. and Tiwari, K.K. 2019. Assessment of genetic diversity in castor (Ricinus communis L.) using microsatellite markers. BioSci. Biotech. Res. Asia, 16(1): 61-69.

View at Google Scholar

2.Cooper, T.G. 1971. The activation of fatty acids in castor bean endosperm. J. Biol. Chem., 246(11): 3451-3455.

View at Google Scholar

3.da Silva Ramos, L.C., Tango, J.S., Savi, A. and Leal, N.R. 1984. Variability for oil and fatty acid composition in castorbean varieties. J. Am. Oil Chemists’ Soc., 61(12): 1841-1843.

View at Google Scholar

4.Dharajiya, D.T., Shah, A., Galvadiya, B.P., Patel, M.P., Srivastava, R., Pagi, N.K., Solanki, S.D., Parida, S.K. and Tiwari, K.K. 2020. Genome-wide microsatellite markers in castor (Ricinus communis L.): Identification, development, characterization, and transferability in Euphorbiaceae. Indus. Crops and Prod., 151: 112461.

View at Google Scholar

5.Ganesan, K., Sukalingam, K. and Xu, B. 2018. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases-A critical review. Trends in Food Sci. and Tech., 71: 132-154.

View at Google Scholar

6.Gelotar, M.J., Dharajiya, D.T., Solanki, S.D., Prajapati, N.N., and Tiwari, K.K. 2019. Genetic diversity analysis and molecular characterization of grain amaranth genotypes using inter simple sequence repeat (ISSR) markers. Bulletin of the National Res. Centre, 43(1): 1-10.

View at Google Scholar

7.Hammer, Ø., Harper, D.A. and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 9.

View at Google Scholar

8.Huang, F., Peng, C.B.M., Zhu, G., He, Z., Chen, X., Luo, R., and Zhao, Y. 2015. Chromatographic analysis of fatty acid composition in differently sized seeds of castor accessions. Biotech. and Biotechnological Equip., 29(5): 892-900.

View at Google Scholar

9.Jeong, G.T. and Park, D.H. 2009. Optimization of biodiesel production from castor oil using response surface methodology. Appl. Biochem. and Biotech., 156(1): 1-11.

View at Google Scholar

10.Lin, J.T. and Arcinas, A. 2007. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization− mass spectrometry. J. Agric. and Food Chem., 55(6): 2209-2216.

View at Google Scholar

11.Mutlu, H. and Meier, M.A. 2010. Castor oil as a renewable resource for the chemical industry. European J. Lipid Sci. and Tech., 112(1): 10-30.

View at Google Scholar

12.Ogunniyi, D.S. 2006. Castor oil: a vital industrial raw material. Bioresource Tech., 97(9): 1086-1091.

View at Google Scholar

13.Omari, A., Mgani, Q.A. and Mubofu, E.B. 2015. Fatty acid profile and physico-chemical parameters of castor oils in Tanzania. Green and Sustainable Chem., 5: 154-163.

View at Google Scholar

14.Omohu, O.J. and Omale, A.C. 2017. Physicochemical properties and fatty acid composition of castor bean (Ricinus communis L.) seed oil. European J. Biophy., 5(4): 62-65.

View at Google Scholar

15.Parita, B., Kumar, S.N., Darshan, D. and Karen, P. 2018. Elucidation of genetic diversity among ashwagandha [Withania somnifera (L.) Dunal] genotypes using EST-SSR markers. Res. J. Biotech., 13(10): 52-59.

View at Google Scholar

16.Rojas?Barros, P., de Haro, A., Munoz, J. and Fernández? Martínez, J.M. 2004. Isolation of a natural mutant in castor with high oleic/low ricinoleic acid content in the oil. Crop Sci., 44(1): 76-80.

View at Google Scholar

17.Román-Figueroa, C., Cea, M., Paneque, M. and González, M.E. 2020. Oil content and fatty acid composition in castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy, 10(8): 1145.

View at Google Scholar

18.Shah, S.K., Joshi, A.V., Patel, A.M. and Patel, D.K. 2017. Screening of castor genotypes for ricinoleic acid content. Int. J. Cur. Microb. and Appl. Sci., 6(8): 1318-1324.

View at Google Scholar

19.Shah, S.K., Patel, D.K., Patel, R.M. and Patel, P.S. 2015. Seed and oil quality characteristics of some castor (Ricinus communis L.) inbred lines. Int. J. Agric., Env. and Biotech., 8(1): 177-181.

View at Google Scholar

20.Yadav, P. and Anjani, K. 2017. Assessment of variation in castor genetic resources for oil characteristics. J. Am. Oil Chemists’ Soc., 94(4): 611-617.

View at Google Scholar

21.Yeboah, A., Ying, S., Lu, J., Xie, Y., Amoanimaa-Dede, H., Boateng, K.G.A., Chen, M. and Yin, X. 2020. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Sci. and Tech., https://doi.org/10.1590/fst.19620.

View at Google Scholar

International Journal of Agriculture Environment & Biotechnology(IJAEB)| In Association with AAEB

27069108 - Visitors since February 20, 2019